在前两篇文章中,我们学习了如何从密集层(dense)的堆栈中构建完全连接的网络。首次创建时,网络的所有权重都是随机设置的——网络尚不“知道”任何事情。在本节中,我们将了解如何训练神经网络;我们将看到神经网络是如何学习的。 与所有机器学习任务一样,我们从一组训练数据开始。训练数据中的每个示例都包含一些特征(输入)和一个预期目标(输出)。训练网络意味着以一种可以将特征转换为目标的方式调整其权重。例如,在 80 Cereals 数据集中,我们想要一个网络,它可以获取每种谷物的“糖”、“纤维”和“蛋白质”含量,并预测该谷物的“卡路里”。如果我们能成功地训练一个网络来做到这一点,它的权重必须以某种方式表
深度学习入门三----梯度下降
发表评论
420 views